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Abstract
Noisy Intermediate-Scale Quantum (NISQ) computers
are enabling development and evaluation of real quan-
tum algorithms, but due to their highly erroneous nature,
careful selection of qubits to map the algorithm on to real
hardware is required to minimize the error rate of the al-
gorithm output. In this paper, we propose UREQA, a new
approach that introduces quantum-operation-aware error
rate prediction to minimize of output errors of quantum
algorithms running on NISQ devices.

1 Introduction
Noisy Intermediate-Scale Quantum (NISQ) computers
are enabling development and evaluation of quantum al-
gorithms in various domains including chemistry and
physics simulations, combinatorial and black-box opti-
mization, and quantum cryptography [16, 20]. A major
challenge toward increasing the practicality and wide-
adoption of quantum computing is the high error rate ob-
served on current NISQ devices, often orders of magni-
tude higher than the classical computing systems [16,20].
This challenge is likely to remain prevalent in the near-
term, and requires innovative techniques to mitigate the
side-effects of quantum errors [6, 12, 16, 20]. Next, we
provide a brief background of quantum computers, er-
rors, and algorithm execution.

Background and Problem Statement. In quantum
computers, a qubit is the fundamental unit, analogous
to a classical bit. A qubit state (|Ψ〉) can be expressed
as a superposition of the two basis states: |0〉 and |1〉.
More formally, |Ψ〉 = a |0〉+ b |1〉, where a and b are
complex numbers such that ‖a‖2 +‖b‖2 = 1. Due to the
quantum physical behavior of qubits, upon measurement,
this superposition collapses, and the qubit is found either
in state |0〉 (with probability ‖a‖2) or in state |1〉 (with
probability ‖b‖2). Multiple operations can be sequen-
tially performed on a set of qubits on a computer to run a
quantum algorithm. Upon the completion of the execu-
tion of a quantum algorithm, the qubit state is measured
for all qubits and the output is analyzed.

The qubit operations, referred to as quantum opera-
tions, are of three types: 1-qubit gates, 2-qubit gates and
readout. 1-qubit gates operates on a single qubit and
change the superposition state of the qubit. 2-qubit gates
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Figure 1: Execution flow of Quantum Phase Estimation (QPE)
algorithm mapped to a quantum circuit. Each horizontal line
represents a qubit, and each box represents a quantum opera-
tion. The time order of operations flows from left to right.

entangle two qubits and can change the state of the “tar-
get” qubit depending on the state of the “control” qubit
(Sec. 2 provides more details on these operations). The
readout operation simply refers to measuring a qubit’s
state. The readout operation is applied only at the end of
the execution as it destroys the qubit’s state. A quantum
algorithm is expressed as a sequence of gate operations
operating on multiple qubits. The mapping of a logi-
cal quantum algorithm on the physical qubits of a quan-
tum computer is referred to as a quantum circuit — a set
of quantum operations and the corresponding qubits on
which the operation is being performed. An example of
the execution of a quantum circuit is shown in Fig. 1.
This example circuit has three qubits all initialized to
the ground state |0〉. A few quantum gates are applied
to them (details provided in Sec. 2) and their states are
measured at the end and transferred over to a classical
computer. It is important to note that a single quantum
algorithm can map to multiple circuits in different ways
on the same computer, much like how a classical algo-
rithm can be executed on any permutation of transistors.

Unfortunately, qubits and operations on NISQ ma-
chines are highly error-prone and hence, quantum cir-
cuits have erroneous output. State-of-the-art approaches
carefully choose the qubits and operations with the low-
est overall error rate for determining the best circuit
map [3, 15, 18, 25–28, 31, 33]. Error rate of each opera-
tion is estimated based on the historical information (e.g.,
IBM calibrates and publishes error rate for all qubits of
a machine on a twice-a-day basis). Based on these er-
ror rates, a “good” circuit map is chosen to obtain an
outcome that has a high probability of being close to
the correct output. Estimating error rate correctly is
the key to choosing the optimal circuit map for a given
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quantum algorithm. For example, if the estimated er-
ror rate of each qubit is significantly different than the
actual error rate when the circuit map is executed, then
these differences add up over the circuit map execution
and result in a significantly inaccurate outcome. There-
fore, previous works have focused on estimating the error
rates accurately and using that to find the optimal circuit
map [3, 15, 18, 25, 26, 28].

What is Missing from Existing Solutions? Current ap-
proaches use a single number to characterize the error
rate of a given qubit irrespective of the different quantum
operations being performed on the qubit [25, 26, 28, 31].
For the first time, we show that error rate is not only
qubit-specific, but also operation-specific (as explained
in Sec. 2, a 1-qubit gate can perform different types of
quantum operations on a single qubit). We show that
quantum error rates can vary significantly depending on
the specific quantum operation that is being performed,
even if other conditions are kept constant (i.e., the phys-
ical qubit and the machine). Some qubits with low ag-
gregate average error rate might experience high error
rate for specific quantum operations. Hence, these qubits
should be avoided for a circuit-map selection if a partic-
ular circuit consists of many such specific quantum op-
erations. The reason for this phenomena is the unstable
nature of current NISQ technology where qubits are erro-
neous and do not have consistent properties as different
qubits interact differently with external control and the
environmental features. This is the first work to discover
and leverage the above insight to choose better circuit
maps that lower the impact of quantum errors, and push
the state-of-the-art in improving the efficiency of quan-
tum algorithm execution on NISQ computers.

UREQA Solution. UREQA1 builds a data driven model
for correctly estimating the error rates of operations on
different qubits of a quantum computer, and then, lever-
ages this information to find the most optimized circuit
for a quantum algorithm. UREQA builds its error rate
prediction model by performing a large number of ex-
periments on real IBM NISQ computers. Our evaluation
shows that these error rate prediction methods are more
accurate than current state-of-the-art approaches of sim-
ply using a general error rate number periodically pub-
lished by the quantum computing platform provider.

To demonstrate UREQA’s effectiveness, we evaluate
UREQA for a diverse set of quantum benchmarks, con-
ducting experiments over more than 50 days on four dif-
ferent quantum computers in the IBM QX cloud. Our
results show that our operation-aware solution achieves
a small median prediction error rate of 1%. Using these
operation error-rate prediction models, UREQA’s opti-

1UREQA (Eureka) stands for utilizing operation-aware error rate
predictions (for better circuit mapping) on quantum computers.

Table 1: IBM QX quantum computers.
Online Date Computers (Num. Qubits)
Nov 06, 2018 Melbourne (14), Yorktown (5)
Jul 03, 2019 Ourense (5), Vigo (5)

Melbourne Yorktown Ourense & Vigo

Figure 2: Layout of IBM quantum computers. The circles rep-
resent qubits. The arrows show possible 2-qubit gates: the di-
rection points from control to target qubit.

mized circuit map selection achieves up to 15% reduc-
tion in error rate for a quantum algorithm, compared to
the current approaches which rely on a single aggregated
number for error rate estimation based on historical data.

UREQA’s quantum error prediction model and
circuit mapping framework is open-sourced at
https://github.com/GoodwillComputingLab/UREQA.

2 UREQA: The Solution
Background. This study is performed on the IBM Quan-
tum Experience (QX) - a public cloud service. We use
the IBM QX machines listed in Table 1. They cover a
diverse range of quantum architectures in terms of error-
rates, topology, and time of introduction (Fig. 2).

Quantum operations on these computers include both
the gate and readout operations. Primary 1-qubit gates
include the Hadamard (H) gate which puts the two ba-
sis states into equal superposition and the x-, y-, and z-
rotation gates (Rx, Ry, and Rz, respectively) which rotate
the qubit about the x-axis, y-axis and z-axis on the Bloch
Sphere, respectively. The Bloch Sphere is a unit sphere
with the |0〉 state represented as a vector pointing toward
the positive z-axis and the |1〉 state is represented on the
negative z-axis. The other two axis represent the qubit
phase. The qubit state vector can point anywhere on the
Bloch Sphere, but upon readout, it collapses to the posi-
tive (|0〉) or negative (|1〉) z-axis. As an example, Fig. 3
uses the Bloch Sphere to show the state changes after ap-
plying a H gate followed by a Rz gate with π rotation to a
single qubit. When the H gate is applied, the qubit state
vector points toward the positive x-axis and the qubit is
equally probable to be measured as |0〉 or |1〉. This prob-
ability of measurement remains the same even after a Rz
rotation is applied, except the qubit has a negative phase.

All 1-qubit gates have 2-qubit variants (CH, CRx, CRy
and CRz) where one qubit is the control and the other is
the target. The respective 1-qubit gate is applied to the
target qubit depending on the superposition of the control
qubit. In Fig. 1, the connection between qubit 0 and Rz
gate of qubit 1 means it is a CRz gate with qubit 0 as
control and qubit 1 as target.

These qubit operations can be erroneous. IBM’s qubits
are fixed-frequency superconducting Transmon qubits
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Figure 3: A qubit (green arrow tip) on a Bloch sphere. The
qubit in (a) first gets manipulated by an H gate to state in (b),
then by a Rz gate to state in (c).

Qubit 0

Qubit 1

Coupling 
ResonatorReadout 

Resonator

Readout 
Resonator

Superconducting 
Josephson Junction

Capacitor

Figure 4: Design of IBM’s superconducting qubits technology.

based on Josephson Junctions, and the Transmon fre-
quency is referred to as the qubit frequency. On IBM’s
quantum computers, the qubits are implemented using
Josephson Junctions created by separated superconduct-
ing electrodes and capacitors as shown in Fig. 4. 1-
qubit gates are performed by applying external controls
in the form of microwave pulses. Errors in applying these
pulses cause 1-qubit gate errors. Entanglement be-
tween two qubits is performed using coupling resonators.
These coupling resonators can be highly erroneous caus-
ing 2-qubit gate errors. Lastly, readout operation (or
qubit state measurement) is performed using readout res-
onators as shown in Fig. 4. The readout resonators are
also highly error-prone and cause readout errors when
qubit states are measured. In fact, other factors can also
affect error rates. Once initialized, a qubit can only re-
tain its state for a limited time (coherence time). There
are two types of coherence times: (1) The T1 coher-
ence time is associated with amplitude damping due to
the qubit’s natural energy decay to the ground state. (2)
The T2 coherence time is associated with phase damp-
ing due to environmental factors.

IBM’s computers are calibrated twice a day, and the
qubit coherence times change after each calibration. We
note that the error rates are determined when calibration
tasks are performed for all the operations of a quantum
computer. Calibration is the task of determining qubit
frequency and accordingly, setting the properties of the
microwave tone which changes the state of a qubit. Dur-
ing calibration, operation characteristics such as the fre-
quency of a qubit and the optimal microwave tone am-
plitude are determined based on new properties of the
qubit. These characteristics are then used to perform all
the operations. These new characteristics determine the
error rate of the operation. The effect of environmental
factors (such as the electromagnetic interference, fluctu-
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Figure 5: Choice of circuit map can greatly impact overall out-
put error: different circuit maps for the QPE algorithm.

ating temperature, or mechanical vibrations) is already
captured in the operation error rates. Coherence times
are also measured immediately after calibration is per-
formed. Note that regular circuits (jobs) cannot run on
machines when calibration is being performed. Thus,
it is impractical to constantly keep calibrating the ma-
chines, and hence, this practical constraint forces the cal-
ibration to be performed typically twice daily.

Current Efforts in Circuit Mapping. IBM posts a sin-
gle error number for all 1-qubit and 2-qubit gates for each
qubit twice a day. One solution to the aforementioned
circuit mapping problem can be to map quantum opera-
tions on qubits which have the minimum operation error
rates according to these posted numbers [10, 25, 26, 28].
The idea is to maximize the Estimated Success Proba-
bility (ESP) of a quantum circuit [25]. The ESP is cal-
culated as ∏

Ngates
i=1 gi ∗∏

Nreadout
j=1 m j, where g is the success

rate of gates and m is the success rate of readout (suc-
cess rate = 1 - error rate). The circuit map with highest
ESP is the optimal circuit map. Fig. 5 shows the im-
pact of choosing a low quality circuit map vs. an optimal
circuit map for executing the quantum phase estimation
(QPE) algorithm. The correct output of QPE has states
|100〉, |101〉, and |111〉 with probability 0.125, and state
|110〉 with probability 0.625. On real-systems, executing
a circuit map results in state probabilities that are dif-
ferent than the correct probabilities. Using the correct
probabilities as reference, the optimal circuit map has an
overall error of 6% (sum of errors of all states divided
by 2), while the low quality circuit has an overall error
of 28%. Thus, estimating the ESP of a circuit map ac-
curately (and hence, in turn estimating the error rate of
quantum operations) is critical for mitigating the side-
effects of erroneous quantum operations. However, cur-
rent approach of using the published numbers to estimate
the error rates implicitly assumes that all 1-qubit opera-
tions have uniform errors and that all 2-qubit operations
also have uniform errors. This is far from the actual be-
havior of errors as we show next.

Different quantum operations exhibit significant
variation in observed error rates. Fig.6 shows that
quantum errors are correlated with the specific type of
operation being performed (on the same qubit; results
are averaged over all available qubits and platforms for
simplicity). For example, on IBM computers Rz is imple-
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Figure 6: Different quantum operations can have significant
different error rates with a high degree of variance.
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Figure 7: Error rate of a quantum operation varies across ma-
chines and among qubits within the same machine.

mented as a simple frame change with no physical com-
putation; hence, it has close to 0 error rate. The H gate
also has a low error rate; however, the error rates of the
other two 1-qubit gates Rx and Ry are much higher. 2-
qubit gates like CH and CRz also have high error rates. It
is a conventional belief that 2-qubit gates have a higher
error rate than 1-qubit gates [10, 23, 27]. However, our
analysis reveals that while on average 2-qubit gates have
higher error rates than 1-qubit gates, certain types of 1-
qubit gates such as Rx and Ry have error rates comparable
to 2-qubit error rates and readout (M) error rate.

A potential reason for varying error rates among dif-
ferent quantum operations can be the difference in mi-
crowave tones that are applied to implement the opera-
tion on a gate. For example, an Rx gate with a π rotation
(on a single qubit) is applied using a Gaussian microwave
pulse of a certain calibrated amplitude A. On the other
hand, the H gate (also, on a single qubit) is implemented
using a Gaussian microwave pulse of half the amplitude
(A/2) and pre- and post- pulse frame changes. It can lead
to a lower error rate because its pulse has half the ampli-
tude of the Rx gate and the frame changes have zero er-
ror. Overall, this finding of operation-specific error rates
motivates the need for accounting for the operation type
when estimating the error rates.

Errors rates also vary temporally and spatially across
computers and qubits. In Fig. 6, the error bars show
the high standard deviation (variation) of operation error
rates across time. This situation is further exacerbated
by the fact that error rates for the same operation also
vary across different computers and qubits, as shown in
Fig. 7 for the Rx gate. The variation in the error rates
for Rx across different qubits is considerable and has not
decreased even in the newest IBM quantum computer,
Vigo. The error rates vary across qubits and across oper-
ations performed on the same qubit.

UREQA Overview. While using published errors does
offer simplicity, accurate estimation of ESP needs bet-
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Figure 8: Key steps in UREQAworkflow.

Table 2: Predictive features of different operations.
Operation Predictive Features

1-Qubit Gate Computer ID, Qubit T1 Coherence Time, Qubit T2 Coherence
Time, Qubit Frequency, Gate Type (H, Rx, Ry, Rz)

2-Qubit Gate Computer ID, Control Qubit T1 Coherence Time, Control
Qubit T2 Coherence Time, Control Qubit Frequency, Target
Qubit T1 Coherence Time, Target Qubit T2 Coherence Time,
Target Qubit Frequency, Gate Type (CH, CRx, CRy, CRz)

Measurement
(Readout)

Computer ID, Qubit T1 Coherence Time, Qubit T2 Coherence
Time, Qubit Frequency

ter prediction of operation error rates. The high degree
of instability and uncertainty makes it difficult to model
the behavior of these errors using analytical or rule-based
models. Therefore, UREQA takes a data-driven machine-
learning-based approach, as shown in Fig. 8. We develop
a data-driven model which helps perform accurate pre-
dictions of error rates of individual operations. Then,
when executing quantum algorithms, these pre-trained
models can be used to estimate circuit map error rates
and the best circuit map can thus be selected to execute
the algorithm with minimal errors.

UREQA Model Development. To collect the error rate
data for different types of operations, we developed mi-
cro benchmarks that perform a specific operation on ev-
ery qubit of all available quantum computers. For exam-
ple, to get the readout error, every qubit was measured
in its initialization state of |0〉 without running any gate
operation. To get the error of H, Rx, Ry, Rz, CH, CRx,
CRy, and CRz, the corresponding gate-operation was per-
formed, and result was measured and compared against
the ground truth. Our automated workflow collected over
20,000 samples. Each run consisted of 1024 trials —
multiple trials need to be conducted because the output
of a quantum circuit is probabilistic. Other data such
as coherence times and frequencies of individual qubits
were obtained from IBM’s daily calibration results.

The goal of model development is to predict the error
rate of a given operation given a set of predictive fea-
tures. A complete list of these features is provided in
Table 2 for the three types of quantum operations. For
example, given qubit 0 on Melbourne computer’s T1 co-
herence time, T2 coherence time, and frequency after to-
day’s calibration, predict its readout error rate. The pre-
dictive features are chosen based on their availability on
the IBM QX machines and based on their relevance to
the qubit operation (e.g., T1 coherence time of qubit 1 is
relevant to the 1-qubit error rate of the same qubit but not
to other qubits on the machine). Principle Component
Analysis (PCA) was performed to determine the features
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Table 3: Optimal parameters tuned for KNN learners.
Operation Number of

Neighbors
Distance
Metric

Distance
Weight

1-Qubit Gate 13 Euclidean Squared Inverse
2-Qubit Gate 31 Correlation Inverse
Readout 68 Jaccard Inverse

which contribute the most to the variance of the dataset
and the features shown in Table 2 were found to account
for more than 95% of all variance in the dataset.

After thorough experimentation and hyper-parameter
tuning, we assessed that k Nearest Neighbors (k-NN)
classification learner [1] was the best learning model for
error rate prediction – it has the lowest mis-classification
error. The output of a k-NN learner is a membership to a
class (class here refers to a particular error rate). A sam-
ple is classified by a plurality vote of its neighbors given
a set of predictors. The sample gets assigned the class
most common among its k nearest neighbors.

The hyper-parameter optimization of the k-NN learn-
ers was performed using Bayesian Optimization [21]
which builds a stochastic model of the parameter space
by progressively sampling parameters which have the
highest expected improvement based on the constructed
model. The parameters optimized include number of
nearest neighbors involved in the voting process, dis-
tance metric (e.g., Euclidean, Manhattan, etc.), and
distance weight (e.g., Equal, Inverse, etc.). Table 3
shows the optimal parameters obtained after perform-
ing Bayesian-Optimization-based hyper-parameter tun-
ing for the three error rate learners. 90% of the dataset
was used for training and 10% was used for testing. Data
was randomized so as to ensure that all quantum comput-
ers, qubits, and operation characteristics were included in
the training dataset. The training was performed using
5-fold cross validation [32] to avoid machine-learning
methodology pitfalls such as over-fitting the model.

Finally, we note that UREQA is practically feasible.
The model building and training can be completed within
a few days. This process needs to be invoked or refreshed
when significant architectural/operational changes are
introduced to a particular machine. UREQA’s result qual-
ity is not highly sensitive to the number of samples (e.g.,
an incremental improvement in result quality over 10,000
samples is limited). Note that the investment of one-
time 20,000 sample based training can potentially be
amortized over multiple months in choosing better cir-
cuit mappings which reduce the error rate.

3 UREQA: Evaluation and Analysis
Quantum Algorithms and Circuits. Real quantum
benchmark algorithms were programmed using Qiskit,
IBM’s python-based language for quantum circuits [2],
and executed on different IBM computers (benchmarks
are listed in Table 4). The results from these circuits are

Table 4: Quantum benchmarks used for evaluation.
Benchmark ID Benchmark description
BV 2 2-Qubit Bernstein-Vazirani [5]
BV 3 3-Qubit Bernstein-Vazirani [5]
QPE Quantum Phase Estimation [8]
SIA Simon’s algorithm [13]
HR8

xH Circuit to stress X gate errors (expected output |0〉)
RxHR8

xH Circuit to stress X gate errors (expected output |1〉)
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Figure 9: The prediction quality is much better when operation-
aware predictor is used in UREQA++.

used to assess the improvement in circuit mapping due to
improved prediction power. Note that the training data of
individual operation execution and the assessment data
of execution of real quantum circuits were generated at
disjoint sets of time periods to avoid biasing the results.

The benchmarks are chosen to cover a diverse set
of quantum algorithm characteristics. For example, the
Bernstein-Vazirani (BV ) benchmarks heavily use H and
Rz gates and the QPE benchmark has high number of 2-
qubit gates such as the CRz gates. Finally, two home-
grown benchmarks HR8

xH (H gate followed by 8 Rx
gates followed by H gate) and RxHR8

xH are used. These
benchmarks are designed to generate and test large 1-
qubit gate errors with a long sequence of Rx gates.

Evaluation Metrics. The prediction quality of a model
is assessed using deviation of the predicted value from
the observed value of the operation error rate. The ef-
fectiveness of a method’s prediction on real quantum al-
gorithms is assessed using the overall output error rate
when a circuit map is selected for an algorithm using the
prediction provided by a model/method.

Evaluated Techniques. (1) The base method: Best cir-
cuit map is selected by maximizing the ESP using the
operation errors posted by IBM as used in current ap-
proaches [10,25,26,28]. (2) UREQA: Best circuit map is
selected by predicting operation errors using k-NN mod-
els trained without using operation-specific information.
(3) UREQA++: Best circuit map is selected by predict-
ing operation errors using k-NN models trained with all
features including operation-specific information.

Including operation-specific information in the pre-
diction improves the prediction quality significantly.
Fig. 9 shows that when operation-specific information
(type of 1-qubit or 2-qubit gate) is included as the pre-
dictor, the prediction error is much lower on average. For
1-qubit gates, the median deviation from observed error
rate is only 1% with UREQA++ compared to 2.9% with
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Figure 10: The prediction quality is good across different com-
puters with UREQA++.
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Figure 11: Circuit maps selected using UREQA++ perform
much better as compared to other methods.

UREQA. We note that the CDF of UREQA++ has a much
steeper rise, indicating that the prediction error is smaller
for a large majority of test samples. Similarly, for 2-qubit
gates, the median deviation from observed error rate is
only 1% with UREQA++ and it is 1.4% with UREQA. As
our results show later, even this seemingly small differ-
ence has a compounded impact when these predictions
are used to estimate the error rate of an entire circuit be-
cause multiple operations are used in real quantum algo-
rithms. Note that both UREQA and UREQA++ are hyper-
parameter optimized using the Bayesian-Optimization-
based procedure described earlier. Thus, both models
are optimal for their given set of predictor features. Yet,
UREQA++ performs better as it is trained in an operation-
aware manner.

The deviation from observed value is small across dif-
ferent quantum computers when using UREQA and
UREQA++. Fig. 10 shows that UREQA and UREQA++
have another desirable result: the deviation from the ob-
served value is low across the four computers for all the
three types of operation errors. Melbourne has slightly
higher deviation from the observed error rates than other
computers because it has older and more unstable tech-
nology which makes error rates vary considerably. This
makes prediction difficult. For the other three computers,
the average deviation is less than 2% with UREQA++.

Quantum circuit error rate drops significantly when
the circuit map is chosen using predictions provided
by UREQA++. Fig. 11 shows error rates when the best
circuit maps to execute a quantum algorithm are selected
using different methods. UREQA achieves similar or sig-
nificantly better results in some cases (e.g., more than
10% in QPE) compared to the base method. The simi-
lar results are mostly due to the fact that both methods
do not consider operation-specific information. On the
other hand, UREQA++ performs much better across dif-
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Figure 12: Overall output is much less erroneous with
UREQA++ and UREQA than with the base method.

ferent quantum algorithms, generally resulting in over 5-
15% improvement in the error rate compared to the base
method (e.g., BV 2, QPE, HR8

xH). UREQA++ is able to
achieve this low circuit error by producing output state
probabilities close to the correct output. Fig. 12 provides
an example of this for QPE, where evidently, the circuits
produced by the base method and UREQA have more
error from the correct output (Table 5) than UREQA++.
This demonstrates that the improved prediction quality
with UREQA++ when using operation-specific informa-
tion results in the selection of better circuit maps, which
ultimately reduces the side-effect of erroneous quantum
operations on current real quantum hardware.

Table 5: State error results for the QPE output in Fig. 12.
Method Error of Each State from the Correct Output (%) Overall

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉 Error (%)

Base 5.3 1.6 2.9 2.0 1.7 0.9 24.7 10.3 ∑/2 =24.7
UREQA 2.1 1.2 4.2 1.0 3.2 1.1 13.1 0.3 ∑/2 =13.1
UREQA++ 1.3 0.5 1.8 0.7 3.0 1.3 10.7 2.0 ∑/2 =10.7

4 Related Work and Conclusion
Quantum Error Correction. Previous works have pro-
posed algorithms for error correction in qubits which rely
on heavy computational requirements which are unavail-
able in the current NISQ computers [4, 7, 11, 14, 24, 29,
30]. Thus, these methods are not applicable to NISQ
technology, while UREQA++ helps reduce the error rate
of quantum algorithms executed on NISQ hardware.

Minimization of Error Rates. Many recent works
have employed approaches to mitigate the effects of er-
ror rates in quantum circuits via both online and of-
fline methods [3, 9, 10, 12, 15, 17–19, 22, 23, 23, 26, 27,
31, 33, 34]. These include optimizing circuit maps to
minimize error rates [23], migrating circuits to less-
erroneous qubits [34], and minimizing error-prone oper-
ations [31]. UREQA’s operation-aware circuit mapping
technique achieves up to 15% reduction in error rate for
quantum programs, compared to the current approaches.
UREQA’s open-source contribution pushes the state-of-
the-art in quantum error rate prediction to minimize er-
roneous output, which can be leveraged by the quantum
computing systems community.
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