
D��Q: A Novel�antum Output State Classification Method on
IBM�antum Computers using OpenPulse

Tirthak Patel
Northeastern University

Devesh Tiwari
Northeastern University

ABSTRACT
Superconducting quantum computing technology has ushered in
a new era of computational possibilities. While a considerable re-
search e�ort has been geared toward improving the quantum tech-
nology and building the software stack to e�ciently execute quan-
tum algorithms with reduced error rate, e�ort toward optimizing
how quantum output states are de�ned and classi�ed for the pur-
pose of reducing the error rate is still limited. To this end, this paper
proposes D��Q, a quantum output state classi�cation approach
which reduces error rates of quantum programs on NISQ devices.

ACM Reference Format:
Tirthak Patel and Devesh Tiwari. 2020. D��Q: A Novel Quantum Output
State Classi�cation Method on IBM Quantum Computers using OpenPulse.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD
’20), November 2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3400302.3415619

1 INTRODUCTION
Quantum computing is advancing at a rapid pace with the prolifer-
ation of di�erent quantum computing technologies and renewed
interest from industry and academia. In addition to the better es-
tablished quantum annealing approach which has limited applica-
bility [17, 30, 31], di�erent quantum computing technologies are
being actively explored to build a reliable quantum bit (or qubit),
including superconducting qubits, trapped-ion qubits, and photon-
based qubits. The most promising of these is the superconducting
qubit technology which is primarily pioneered by IBM and Google.
In fact, Google recently used their 53-qubit Sycamore quantum
computing chip to run within a few seconds a task which would
take a few days even on large supercomputers [3].

State-of-the-art Noisy Intermediate-Scale Quantum (NISQ) com-
puters based on superconducting quantum technology are actively
being used to establish the usefulness of quantum computers with
potential applications ranging from chemistry and physics simula-
tions to hard optimization problems [6, 18, 24, 33]. Unfortunately,
due to the primitiveness of the technology, current NISQ computers
have high error rates. Further, they do not have enough number of
qubits to deploy meaningful error correction. Because of the high
error rate of NISQ machines, the outputs generated by quantum
algorithms run on current NISQ computers are erroneous.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415619

A signi�cant amount of research e�ort has been geared toward
understanding, debugging, and mitigating the errors of these com-
puters. These works have mainly focused on three primary research
aspects: (1) developing quantum error-and-noise-aware simulation
frameworks [2, 10, 26], (2) debugging quantum programs to identify
code-level errors [23, 27], and (3) providing a best-e�ort solution
to the NP-hard problem of mapping a logical quantum algorithm
to a physical set of qubits such that the error rate of the produced
output is minimized [4, 5, 14, 21, 22, 28, 34, 35, 37–39, 41, 43].

However, research e�orts to address the problem of quantum
output state classi�cation are still in a nascent stage. This problem
refers to the task of determining whether a qubit’s output energy
signal, after a quantum algorithm’s execution, should be classi�ed
as the |0i state or the |1i state. This is not a straightforward task as
the output state is a�ected by a variety of error-inducing factors.

To the best of our knowledge, we propose D��Q, the �rst method to
optimize the classi�er which di�erentiates between di�erent quantum
output states using the quantum pulse schedules on an IBM supercon-
ducting quantum computer. D��Q is built on two key insights: (1)
The classi�cation methodology, including choice of quantum gates
and classi�er shape, can a�ect the error rate of quantum output; (2)
More surprisingly, the quantum output error rate is dependent on
the probability of the output states. Current state-of-art classi�er
is not aware of these characteristics and hence, su�ers from a rel-
atively high error rate. D��Q addresses this challenge by building
a classi�er that is trained using multiple micro-benchmarks with
di�erent output state probabilities and optimized using a simulated
annealing approach. We proposes two versions of D��Q: circle- and
ellipse-shaped classi�ers. Our evaluation shows thatD��Q improves
the median error rate, the 75C⌘ percentile error rate and the variabil-
ity in error rate. D��Q is practical and suitable for deployment: the
training data can be collected within 2 minutes during calibration
(calibration is the task of determining the optimal parameters to
drive the qubit) and the classi�er can be optimized within 7 minutes
on an Intel Core i7 processor, and can be used for all algorithm runs
until the next calibration period (approx. every 12 hours).

D��Q’s classi�cation toolbox is compatible with IBM’s Python-
based Qiskit OpenPulse framework and can be used with any IBM
quantum computer which supports OpenPulse. It is available at:
http://github.com/GoodwillComputingLab/DISQ.

2 QUANTUM COMPUTING BACKGROUND
In this section, we provide some background of quantum computing,
superconducting quantum computers, and their sources of errors.

2.1 Quantum Computing Fundamentals
A qubit is the building block of a quantum computer. A classical bit
can exist in one of two states: 0 or 1. On the other hand, a qubit’s state
(| i), during computation, can be expressed as a superposition of

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Tirthak Patel and Devesh Tiwari

(a) (b) (c)

Figure 1: The Block Sphere visualizes a qubit’s state. Here, two
'~ (c/2) gates are applied to a qubit initialized to state |0i.

Capacitor
(Niobium)

Qubit

Inductor
Josephson
Junction

(Aluminum)

Capacitor

Readout
Resonator

Coupling
Resonator

Readout
Resonator

Coupling
Resonator

Figure 2: A superconducting qubit is made out of an LC oscillator
circuit constructed using a capacitor and a Josephson Junction.

the two basis states: |0i and |1i (in bra-ket notation). More formally,
| i = U |0i + V |1i, where U and V are complex numbers such that
kU k2 + kV k2 = 1. When the quantum computation is completed,
the qubit’s state is measured or read out. When the qubit is read
out, its superposition is destroyed, and it is measured in state |0i
(with probability kU k2) or in state |1i (with probability kV k2).

A quantum algorithm is a set of quantum gates sequentially
applied to the qubits on a quantum computer. When a quantum
algorithm completes execution, the state of all or some of the qubits
is measured to analyze the output. A qubit’s state can be read
out only once during the algorithm execution as it collapses the
qubit’s superposition. Therefore, it is only read out at the end of the
algorithm’s execution. Note that the output of a quantum algorithm
is probabilistic. Therefore, multiple trials are conducted to get the
output probabilities of a qubit state. For example, if a qubit has state
| i = 1p

2
|0i + 1p

2
V |1i, then the output probability of state |0i is��� 1p

2

���2 = 1
2 and state |1i is also

��� 1p
2

���2 = 1
2 . Therefore, if 1024 trials

are conducted, then it would be expected that half of the trials (512)
would have state |0i and the other half would have state |1i.

Quantum gates can be of 1-qubit or 2-qubit variety. A 1-qubit gate
operates on a single qubit and puts it in the desired superposition.
A 2-qubit gate entangles two qubits and modi�es the superposition
of the target qubit based on the superposition of the control qubit.
A general 1-qubit gate has three components: x-, y-, and z- rota-
tion components which rotate the qubit about the x-axis, y-axis
and z-axis, respectively, on the Bloch Sphere (denoted as ('G (\),
'~ (q), and 'I (X), respectively, where \ , q , and X are the angles
of rotation). The Bloch Sphere is a unit sphere with the |0i state
represented as a vector pointing toward the positive z-axis and
the |1i state represented on the negative z-axis. While, the qubit
state vector can be pointed in any direction on the Bloch Sphere,
when it is measured, it collapses to the |0i or the |1i state, and its

Drive Pulse Duration

Pulse
Amplitude

Readout Pulse Duration

Qubit
Drive

Channel

Qubit
Readout
Channel

Figure 3: Microwave pulses are applied to drive the qubit to a
desired state and read out the qubit value.

output probability is the projection of the vector onto the z-axis.
For example, in Fig. 1, the Bloch Sphere shows the state changes
after applying gates to a qubit initialized to state |k i = |0i. First, a
'~ (c/2) gate is applied. This puts the qubit in equal superposition
(0.5 probability of observing both |0i and |1i). Another '~ (c/2)
gate brings the qubit to state |1i. Arbitrary rotations can be applied
about any of the three axes to achieve the desired superposition.
All 1-qubit rotations have 2-qubit variants (⇠'G (\), ⇠'~ (q) and
⇠'I (X)), where the target qubit is rotated as per the control qubit.

2.2 IBM’s Superconducting Qubit Technology
IBM uses a circuit-based approach toward developing qubits us-
ing superconducting Josephson Junctions. As shown in Fig. 2, a
superconducting niobium linear capacitor and a superconducting
aluminium Josephson Junction, which behaves as a non-linear non-
dissipative inductor, are developed on a silicon wafer. To build the
Josephson Junction, two pieces of weakly coupled superconducting
electrodes are separated by a very thin tunnel barrier which serves
as an insulating layer. Overall, this forms a non-linear LC oscillator
which behaves like a qubit if the parameters are tuned correctly.
The oscillator allows for a two-level quantum system with discrete
quantum energy levels. The lowest two energy levels are used as
the |0i (ground level) and the |1i (�rst excited level) states.

2.3 Driving and Measuring Qubit States
The superconducting-qubit system can be addressed using external
controls. Typically, the superconducting qubit has a frequency in
the range of 4-5 GHz. As shown in Fig. 3, a Microwave tone can
be applied at the qubit frequency to drive the qubit. By applying a
pulse shape to the Microwave tone, quantum gates can be achieved.
Typically, a Microwave pulse with a Gaussian shape is used to drive
the qubit. Frame-of-reference change is used to apply gates along
di�erent axes. The pulse with the maximum amplitude magnitude
is known as the “c Pulse” and it is used to apply the 'G (c) rotation,
which transforms the |0i state to the |1i state and vice versa.

The qubit state is measured by coupling the qubit to a super-
conducting transmission resonator. It is ensured that the readout
resonator frequency is dependent on the state of the qubit. Thus, the
qubit state can be determined by probing the resonant frequency.
Fig. 3 shows that a long Square Gaussian pulse is applied to measure
the state of the qubit. Lastly, as shown in Fig. 2, 2-qubit entangling
gates are applied using a superconducting coupling bus resonator.

2.4 Sources of Error in Quantum Computers
There are several sources of error in NISQ technology. Once initial-
ized, a qubit can only hold the coherence of its state for a limited

D��Q : A Novel�antum Output State Classification Method on IBM�antum Computers using OpenPulse ICCAD ’20, November 2–5, 2020, Virtual Event, USA

0 10 20

�10

0

10

(a) Hadamard Output

0 10 20

�10

0

10

|0i
|1i

(b) Good Discriminant

0 10 20

�10

0

10 |0i
|1i

(c) Poor Discriminant

Figure 4: The role of a classi�er is to identify the outputs of trials
as |0i or |1i in a manner which minimizes the error.

0 10 20

�10

0

10

|0i

(a) Step 1: State |0i Run

0 10 20

�10

0

10

|0i |1i

(b) Step 2: State |1i Run

0 10 20

�10

0

10

|0i |1i

(c) Step 3: Discriminant

Figure 5: In the baseline case, a linear discriminant is used to
di�erentiate the |0i vs. |1i using a three-step process.

amount of time. There are two types of coherence decays: (1) The
T1 coherence refers to the amplitude damping. (2) The T2 coher-
ence refers to the phase damping. NISQ errors also include the gate
and readout errors. An erroneous application of the microwave
pulses can cause gate errors, i.e., the gate could be put in a slightly-
o�-the-desired superposition which can lead to incorrect output
probabilities. The readout resonators are also error-prone and cause
readout errors. Refer to Patel et al. [32] for more details about the
di�erent sources of error. These errors can be a result of deviations
from the optimal pulse parameters such as the frequency at which
the pulse is applied, its amplitude, and its duration. Moreover, be-
cause the technology is still maturing, the qubit’s properties, such
as its frequency, vary. Therefore, the optimal pulse parameters need
to be determined on a regular basis.

For this reason, IBM’s computers are calibrated twice a day, and
the qubit’s error rates change after each calibration. Calibration is
the task of determining qubit properties, such as frequency, and
accordingly, setting the parameters of the microwave pulses for the
gate operations. These parameters are then used to perform all the
operations until the next calibration. Also, during the calibration
period, the classi�er which distinguishes between the |0i and the
|1i state is developed (as discussed next in Sec. 3).

3 MOTIVATION FOR DISQ
In this section, we introduce the state classi�cation problem, the
existing state-of-art classi�cation method, and its ine�ciencies.

3.1 Classi�cation of Output States
Once a quantum algorithm has completed execution, its �nal state
is measured. To do this, the readout pulse is run on the readout
channel (as shown in Fig. 3), and the corresponding signal, which
measures the energy state of the qubit, is recorded on the acquire
channel. The signal recorded during the entire acquire duration
is then summed up and a single value is returned for each trial
for each qubit. This value is a complex number with a real and an

imaginary component. It is used to determine if the measured state
represents the |0i state or the |1i state.

As an example, consider that a quantum gate known as the
Hadamard gate is executed on a qubit initialized to state |0i and
its resulting �nal state is read out. The resulting output values
of conducting 1024 trials are shown in Fig. 4(a). The Hadamard
gate puts a qubit in equal superposition of the |0i and the |1i state
(0.5 probability of both states). Therefore, ideally, 512 of these trial
outputs should be classi�ed as state |0i and the other 512 as state |1i.
Given the nature of NISQ computers, the ideal classi�cation is not
possible. However, best e�ort must be made to reduce the output
error. The output error (in percentage) is de�ned as the |correct
probability of state |0i � observed probability of state |0i|⇥100 =
|correct probability of state |1i � observed probability of state |1i|⇥100.
The observed probability of |0i is calculated by dividing the number
of trials which resulted in |0i by the total number of trials conducted.
Also, by de�nition, probability of |1i = 1� probability of |0i.

A trivial choice for state classi�cation is a linear classi�er. Con-
sider the linear classi�er used in Fig. 4(b) which classi�es 548
trial outputs as state |0i. Then, the observed output probability
of state |0i is 548/1024 = 0.535, which results in an output error
of |0.5 � 0.535| ⇥ 100 = 3.5%. A poorer quality classi�er shown
in Fig. 4(c) classi�es 323 trial outputs as state |0i, resulting in an
error of 18.5%. Thus, developing a classi�er which minimizes the
output error is critical. Note that it is not possible to use di�erent
classi�ers which cater to the output probabilities of di�erent quan-
tum algorithms as the output probabilities are not known for real
quantum algorithms. Therefore, only one classi�er is developed and
used for all algorithms. Typically, the classi�er is developed during
calibration, once the qubit’s frequency and pulse parameters, such
as amplitude, are determined.

3.2 IBM’s Existing Classi�cation Methodology
Next, we look at the state-of-art method used for classi�cation [2].

Step I. First, the qubit is initialized to the |0i state and its value is
directly readout without running any gate operations. This is done
for multiple trials. The probability of observing state |0i would be 1
in this case. Therefore, ideally, the output value of all trials should
be classi�ed as belonging to state |0i. Fig. 5(a) shows the output
spattering of 1024 trials of this run on the complex plane.

Step II. Next, the output values for the |1i state need to be
generated. To achieve this, the qubit is initialized to the |0i state.
Then, a c pulse (i.e., a rotation of c about the x-axis – 'G (c)) is
applied to it to put it in the |1i state (pointing toward the negative
z-axis in the Bloch Sphere). It is then measured, as shown in Fig. 3.
Ideally, the output value of all trials of this run should be classi�ed
as belonging to the |1i state. Fig. 5(b) shows the output spattering
of 1024 trials of this run which produces the |1i state.

Step III. The last step is to construct a discriminator. Fig. 5(b)
shows that there could be some overlap between the values gen-
erated by the |0i state and the values generated by the |1i state.
This is due to the various gate and coherence errors mentioned in
Sec. 2 which contribute to erroneous output. Therefore, a perfect
distinction between the |0i and the |1i state, which would result
in an output error of 0%, is not possible to achieve. However, best
e�ort must be made to reduce the output error. Currently, a linear

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Tirthak Patel and Devesh Tiwari

|0i

0

2

4

6

8

10

12

14

Figure 6: Di�erent error rates are observed for runs with di�erent
output probabilities of state |0i. The bars show the median in each
bin; the range indicators show the spread from the 25C⌘ percentile
error to the 75C⌘ percentile error.

Run the Simulated
Annealing Engine
and Generate the
DISQ Classifier

Generate Training
Micro-Benchmarks

to Execute on a
Quantum Device

Execute the
Corresponding

Pulse Schedules
and Collect Data

Use the DISQ
Classifier until the
Next Calibration

Cycle

Figure 7:Overview of the steps when classifying states usingD��Q.

discriminator is used to minimize this output error by generating a
discriminator which maximizes the distance between the means of
the classi�ed samples, as shown in Fig. 5(c). Points that fall above
the line are classi�ed as |0i and ones that fall below the line are
classi�ed as |1i. For all the runs conducted until the next calibration,
this linear discriminator is used to classify the qubit state.

3.3 Ine�ciencies of the Existing Method
The existing state classi�cation method or the baseline method
uses only two runs – one with output state |0i with probability 1
and the other with output state |1i with probability 1 – to develop
the linear discriminant. As such, applying this discriminant to
runs with other output probabilities can lead to several undesired
consequences. To demonstrate this, we ran over one thousand
micro-benchmark runs for a period of 10 days on IBM’s 1-qubit
Armonk quantum computer. For each run, a * 3('G (\), '~ (q),
'I (X)) gate with three random rotation angles about each of the
three axes, selected uniformly between �c and c , is applied to a
qubit initialized to state |0i. This results in an arbitrary output
probability of state |0i between 0 and 1. Fig. 6 shows the error
rates of runs when they are binned in increments of 0.1 of their
correct output probabilities. We ensured that all bins have the
same number of runs. Fig. 6 shows several interesting results.

(1) The output error is highly correlated with the output probability
of state |0i. For example, the median error when the output
probability of state |0i is 0.9-1 is 3.5% but the median error when
the output probability of state |0i is 0-0.1 is 12.5%, which is 3.5⇥
worse compared to the former’s error rate. Some of this di�erence
is due to the fact that when the output probability of state |0i
is 0-0.1, it means that state |1i is expected for most of the trials.
But, due to the coherence properties of qubits, state |1i is more
likely to lose its coherence and drop from the �rst excited state to
the ground state. However, a degradation in error rate of 3.5⇥ is
unacceptable. Quantum algorithms with lower output probability
of state |0i should not observe a much higher error rate simply

Run 1024 Trials

Measure

Apply to Qubit

Generate
Unitary
Matrix

Correct
Output

Probability

DISQ
Classifier

Observed
Output

Probability

Calculate
ErrorGenerate

U3

Figure 8: Processing and calculating error of a micro-benchmark.

due to the makeup of their output probabilities. An algorithm’s
output probability of states cannot be controlled or modi�ed as
it is an intrinsic property of the algorithm. Therefore, the output
state classi�er should be developed in accordance with these
unintentional outcomes, such that similar error rates are observed
regardless of the output probability of state |0i.

(2) The error rate is high even for a single U3 gate used for the
micro-benchmarks; a typical quantum algorithm consists of many
gate operations and these errors get compounded. The median
error across all the runs is about 5%, while the 75C⌘ percentile
error is 9%. While the error rate is high in isolation, note that
the error rate compounds when more gates are applied as
each gate operation introduces its own error rate while also
increasing the probability of state losing coherence as more time
is spent before measuring the qubit state. Therefore, e�ort is
needed to decrease the median error rate and especially, the 75C⌘
percentile error rate as 25% of the runs havemore than 9% error rate.

(3) The spread or variability in error rate is high even among runs
with similar output probabilities of state |0i. For example, in Fig. 6,
consider the 0.2-0.3 bin. It has a median error of 8.75%. But it has
a signi�cant error spread, i.e., the 75C⌘ percentile error - the 25C⌘
percentile error, of 6.5%. Similarly, other bins also have a high spread.
The fact that the error rate varies so much even among runs with
similar output probability of state |0i indicates that the error rates
are not stable and the results are non-reproducible. Therefore, it
needs to be ensured the spread of the error rates is minimized.

4 DISQ STATE CLASSIFICATION DESIGN
In this section, we describe D��Q, an approach to mitigate the afore-
mentioned issues in Sec. 3. Fig. 7 provides a high-level overview
of the procedure that D��Q uses to develop a discriminating state
classi�er. When a qubit is being calibrated,D��Q should be executed
to obtain the state classi�er. First, D��Q generates di�erent micro-
benchmarks with a diverse range of output probabilities of state |0i
to cover the entire spectrum of possible output state probabilities.
Next, it executes these micro-benchmarks on the qubit which needs
to be calibrated and obtains the raw complex data. Post this, D��Q
runs a black-box simulated annealing engine which optimizes the
parameters of the discriminating classi�er in a manner which mini-
mizes the median error and the spread of the error of the training
data. This classi�er can then be used for all quantum algorithms
executed on that qubit until the next calibration is performed.

4.1 Micro-Benchmark Design and Execution
The �rst order of business is to construct the micro-benchmarks
whose output is fed to the state-classi�er for discriminating the |0i

D��Q : A Novel�antum Output State Classification Method on IBM�antum Computers using OpenPulse ICCAD ’20, November 2–5, 2020, Virtual Event, USA

0 10 20

�10

�5

0

5

10

|0i

|1i

(a) Linear Classi�er

High
Overlap
Zones

(b) High-Overlap Zones

Figure 9:A linear classi�er does not take into account high-overlap
zones which are error-prone because they have a similar density of
points belonging to the |0i and |1i states.

0 10 20

�10

�5

0

5

10

|0i

|1i

(a) C�D��Q: Circle Classi�er

0 10 20

�10

�5

0

5

10

|0i

|1i

(b) E�D��Q: Ellipse Classi�er

Figure 10: Visual representation of C�D��Q (circle classi�er) and
E�D��Q (ellipse classi�er), which focus on low-overlap zones.
and the |1i states. The purpose of these micro-benchmarks is to
cover the full spectrum of output probabilities of state |0i from 0 to
1. As discussed earlier, the reason for this purpose is to ensure that
the developed classi�er minimizes and achieves equal error rate for
quantum algorithms with all types of output probabilities.

We achieve this on IBM’s Qiskit framework by applying the
* 3('G (\), '~ (q), 'I (X)) gate with three random rotation angles
about each of the three axes, selected uniformly between �c and
c , to a qubit initialized to state |0i. This results in an arbitrary
correct output probability of state |0i between 0 and 1 which can
be calculated from the corresponding unitary matrix of the * 3
gate. We run multiple such randomized micro-benchmarks. We
ensure that each output probability of state |0i bin in increments
of 0.1 (i.e., 0 � 0.1, 0.1 � 0.2, . . . , 0.9 � 1) contains equal number of
micro-benchmarks. These micro-benchmarks are then executed on
a quantum computer with 1024 trials each, their observed output
probability is calculated usingD��Q classi�er, and their output error
is calculated, as shown in Fig. 8. The next step for D��Q is to classify.

4.2 D��Q’s Discriminating Classi�ers
The primary consideration when developing a discriminating classi-
�er is to determine the shape of the classi�er. The existing approach
is to use a linear discriminant as shown in Fig. 9(a), which shows
an example density plot of the output of multiple training micro-
benchmarks. The points above the line are classi�ed as state |0i, and
the ones below are classi�ed as state |1i. Thus, a linear discriminant
classi�es points generated by all the trials that are conducted.

However, during the design of D��Q, our experimental results re-
vealed that it might not be suitable to use all the trial outputs. As

Algorithm 1 D��Q’s simulated annealing engine.
1: Input: Training data)data, number of iteration#iter, initial temperature

) , and cooling coe�cient U
2: Best con�guration⇠14BC (sampled randomly)
3: Best objective %best (Objective()data,⇠best)
4: for 8 = 1, . . . ,#iters do
5: Random neighbor con�guration⇠new.
6: Corresponding %new (Objective()data,⇠new) .
7: Energy ⇢ %best � %new.
8: if ⇢ > 0 or ⇢ < 0 and random() < 4⇢/) then
9: ⇠best (⇠new
10: %best (%new
11: end if
12:) (U ⇥)
13: end for
14: Output Best discriminator con�guration⇠best

Fig. 9(b) shows, there are certain zones on the complex plane where
both, points belonging to state |0i and points belonging to state
|1i, exist with an equal density. For example, 45% of the points
falling in these regions could represent state |0i and the remaining
65% could represent state |1i. Thus, these zones are not ideal for
classi�cation purposes as points in these regions are highly likely
to be |0i or |1i. Informed by these observations, we designed D��Q
to ignore such high-overlap zones and instead, focus on low-overlap
zones. For example, such low-overlap zones could be where point
density of state |0i is 99% and that of state |1i is 1%.

A linear classi�er cannot achieve this. In fact, any line-based clas-
si�er (quadratic, cubic, etc.) accounts for all trials by design. To solve
this problem, we propose two classi�ers which can identify low-overlap
zones and not consider high-overlap zones: a circle discriminant classi-
�er (C�D��Q) and an ellipse discriminant classi�er (E�D��Q). Examples
of both of these classi�ers are given in Fig. 10. As shown in the
�gure, both of these classi�ers can focus on low-overlap zones and
avoid high-overlap zones. For example, consider an algorithm that
is run with 1024 trials, and 400 fall in the |0i region, 500 fall in the
|1i region, and 124 fall outside both regions. Then, those 124 trials
can be ignored, and instead the observed output probability of state
|0i can be calculated as 400/(400 + 500) = 0.44. This is in contrast
to a linear classi�er where all trails have to be considered, even
ones which fall in high-overlap error-prone zones.

However, it is non-trivial to determine the parameters which de-
�ne the C�D��Q and E�D��Q classi�ers. C�D��Q has six parameters,
three for each circle (x-coordinate, y-coordinate, and radius). E�
D��Q has ten parameters, �ve for each of the ellipses (x-coordinate,
y-coordinate, width, height, and angle of rotation). While, C�D��Q
has fewer parameters to optimize, E�D��Q has better precision over
the classi�cation region which can potentially lead to a lower er-
ror rate (both are evaluated in Sec. 5). Nonetheless, the problem
of determining their parameters, while minimizing the error rate
and error spread calculated based on the micro-benchmark mea-
sured data, is NP-hard. Therefore, next, we discuss the black-box
simulated annealing engine used to optimize the two classi�ers.

4.3 D��Q Simulated Annealing Engine
The goal of D��Q’s simulated annealing engine is to obtain the
parameter con�guration for C�D��Q and E�D��Q such that the given
objective is nearly-minimized (for the micro-benchmark measured

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Tirthak Patel and Devesh Tiwari

data). A parameter con�guration is one permutation of six parame-
ters for C�D��Q and ten parameters for E�D��Q, which de�ne the
characteristics of the circles or ellipses, respectively.

The �rst step is to design the optimization objective. One option
is to minimize the median error of the training micro-benchmarks.
However, just minimizing the median might create a scenario as
shown in Fig. 6, where runs with a high output probability of state
|0i have a much lower error rate than runs with a low output
probability. Therefore, to avoid this scenario the spread of the error
among the runs (i.e., spread is de�ned as the 75C⌘ percentile error
� the 25C⌘ percentile error) is also minimized. However, if just the
spread is chosen as the objective, then the median error might not
be optimized (for example, spread can be minimized by choosing
parameters such that all runs have an equally high error). Therefore,
to create a balance between the median and the spread, the objective
that D��Q if to minimize the median error + the spread of the error
(we evaluate all three options in Sec. 5).

Next, Algorithm 1 shows how D��Q’s simulated annealing en-
gine iteratively steers toward a parameter con�guration which
minimizes the objective. Initially, the annealing environment has
a high temperature, which means that it has a high likelihood of
exploring di�erent con�guration neighborhoods. As the algorithm
progresses, the temperature reduces and the algorithm narrows in
on a near-optimal con�guration neighborhood. At each iteration,
a random con�guration in the neighborhood of the current best
con�guration is sampled. A neighborhood is de�ned as all points
within one unit for all of the parameters (six for C�D��Q and ten
for E�D��Q). The objective of this sampled con�guration is calcu-
lated for the training dataset. Depending on the current energy and
temperature (as de�ned in Algorithm 1), it is determined if the best
con�guration should be updated to the newly sampled con�gura-
tion. The best parameter con�guration is obtained at the end of the
execution, which can be used to classify the output of all succeeding
quantum algorithm executions until the next calibration.

Scaling to multiple qubits. All qubits on a quantum computer
need to be calibrated and separate classi�ers need to be developed
for all of them. The classi�cation time overhead of D��Q does not
increase with the number of qubits as every step of D��Q can run
in parallel for all the qubits. This includes generating and executing
the micro-benchmarks and independently running the simulated
annealing engine concurrently.

5 DISQ EVALUATION
5.1 Evaluation Methodology
We use IBM’s Armonk quantum computing machine (speci�cations
are provided in Table 1) to conduct our experiments. While IBM
has other machines available, Armonk is the only one which allows
obtaining the pre-classi�cation raw complex values (OpenPulse).

For demonstrating robustness, D��Q is evaluated and compared
against IBM’s existing state-of-art classi�er over multiple days.
The classi�er’s performance is evaluated using a validation dataset.
The training and validation dataset are collected using the same
methodology: 100 randomized U3-based micro-benchmarks, each
with a di�erent output probability of state |0i, 10 belonging to each
probability bin in increments of 0.1. In particular, D��Q is evaluated
across ten days, with a classi�er developed for each day (each

Table 1: Speci�cations of Armonk Quantum Computer.
Online Date 10-16-2019

Number of Qubits 1
Drive Frequency ⇡4.97 GHz
c Pulse Shape Gaussian

c Pulse Amplitude ⇡0.252 + 0.0 9
c Pulse Duration ⇡0.60 `s
Readout Frequency ⇡6.99 GHz
Readout Pulse Shape Square Gaussian

Readout Pulse Amplitude ⇡0.605 + 0.0 9
Readout Pulse Duration ⇡3.52 `s

0

1

2

3

4

5

0

2

4

6

8

7
5

th

0

2

4

6

Figure 11: Both variants of D��Q achieve a lower median error,
75C⌘ percentile error, and error spread than the baseline classi�er.

calibration). The two variants of D��Q, C�D��Q (circle classi�er) and
E�D��Q (ellipse classi�er), are compared against the default Qiskit
classi�er, referred to as the baseline classi�er. The metrics used
include the median error (of the 100 validation micro-benchmarks
across the 10 days), the 75C⌘ percentile error, and the error spread
(the 75C⌘ percentile error � the 25C⌘ percentile error).

5.2 Evaluation Analysis
D��Q achieves a lower median error, 75C⌘ percentile error,
and error spread than the baseline classi�er. Fig. 11 shows that
both C�D��Q and E�D��Q reduce the median error of the single-gate
runs from 5% to 4%. Such a reduction can signi�cantly improve the
performance of quantum algorithms and programs with multiple
gates. For instance, if �ve 5%-error gates are applied, the overall
error rate would be 1 � (1 � 0.05)5 = 23%. In comparison, if �ve
4%-error gates are applied, the overall error rate would be 1 � (1 �
0.04)5 = 18%. Furthermore, the 75C⌘ percentile error is reduced
from 9.5% to 6.5%. With the baseline classi�er, 25% of runs have an
error rate of more than 9.5%, while with D��Q, 75% of runs have an
error rate of less than 6.5% and 50% of runs have an error of less
than 4%. Note that E�D��Q performs slightly better than C�D��Q
for the median error as well as the 75C⌘ percentile error because it
enables a higher level of precision over the classi�cation region.

Next, the error spread drops from 7% to ⇡4.5% with C�D��Q and
E�D��Q – a reduction of 36%. This indicates that not only does D��Q
reduce the median error, but it also reduces the di�erence in the
error rates observed by di�erent runs, allowing for stable results. To
follow up on this, next, we study how D��Q reduces the di�erence
in the error rates of runs with di�erent output probabilities.

D��Q achieves a better equalization of the error rate com-
pared to the baseline classi�er. Fig. 12 shows the median errors
for runs with di�erent output probability of state |0i for the base-
line classi�er, C�D��Q, and E�D��Q. Both C�D��Q and E�D��Q have
similar performance, achieve a more equal distribution of error for
all output probabilities, especially reducing the error rate of runs

D��Q : A Novel�antum Output State Classification Method on IBM�antum Computers using OpenPulse ICCAD ’20, November 2–5, 2020, Virtual Event, USA

|0i

0

5

10

Figure 12: C�D��Q and E�D��Q achieve a more equal error rate
across runs with output probabilities of state |0i from 0 to 1.

0

1

2

3

4

5

0

2

4

6

8

7
5

th

0

1

2

3

4

5

(a) C�D��Q: Circle Classi�er

0

1

2

3

4

0

2

4

6

7
5

th

0

1

2

3

4

5

(b) E�D��Q: Ellipse Classi�er

Figure 13: Optimizing just the median achieves similar median er-
ror and error spread as optimizing the median + the spread. Setting
the objective to just the error spread performs worse.

with output probability of state |0i less than 0.5. For instance, the
median error rate of the 0-0.1 bin is reduced from more than 12%
to less than 6%. This is a reduction of more than 50% in the error
rate which has a signi�cant impact on the stability of output of the
runs with output probability of state |0i of less than 0.1. On the
other hand, as a result of the distribution equalization, the error
rates of runs with output probability of state |0i of more than 0.6
have increased. However, this increase is comparably smaller than
the decrease in error rate for other runs. Overall, D��Q achieves
the goal of reducing the median error, while also equalizing the
error rates across di�erent outputs by also optimizing the error
spread. Next, we look at the impact of optimizing di�erent objective
functions, including ones where the spread is not optimized.

Optimizing the median achieves similar low median error
and error spread as optimizing the median + the spread.
However, when the objective function is set to the median,
day-to-day variability is much worse. Fig. 13(a) and (b) show
the median error, the 75C⌘ percentile error, and the error spread for
choosing di�erent objectives for the simulated annealing engine
to optimize C�D��Q and E�D��Q, respectively. Evidently, in both
cases, optimizing just the spread gives worse performance than
optimizing the other two metrics. In fact, even the error spread is
higher by over 1% for C�D��Q and 0.5% for E�D��Q when the error
spread is optimized. The reason for this is that because optimizing

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

7
5

th

0.0

0.5

1.0

1.5

2.0

2.5

(a) Objective = Median

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

7
5

th

0.0

0.5

1.0

1.5

(b) Objective = Median + Spread

Figure 14: The day-to-day variability is lower with D��Q when the
objective is to minimize the median + the spread. When just the
median is minimized, day-to-day variability is much higher.

the error spread does not focus on optimizing the median error,
the con�guration neighborhoods where the median is optimized
are not explored. But those neighborhoods have the potential to
reduce the spread just by reducing the median, as we observe in the
case when the median is optimized. Optimizing the median gives
similar results as optimizing the median + the spread, with the
latter performing slightly worse for C�D��Q and better for E�D��Q.

However, this does not indicate that it is advisable to optimize
just the median. Fig. 14(a) and (b) show the daily variability in
error metrics when just the median is optimized and when the
median + the spread is optimized, respectively. The daily variability
is calculated as the spread of a given metric across the 10 days.
For example, if the median error is considered, the median error is
calculated for the validation dataset for each of the 10 days, and
then, the spread of those 10 samples is indicated in the �gure. The
baseline case has a daily variability of 2% error even in the case of
the median error, which is a high variability. Interestingly, using
the E�D��Q classi�er with the median + the spread as the objective
reduces that variability to less than 1%, which is a 50% reduction in
error variability. This makes the error rates more stable from one
day to another, just improving the reproducibility of the results.
However, using the E�D��Q classi�er with just the median as the
objective has similar daily variability of median error as the baseline
case. In fact, it has higher daily variability for the 75C⌘ percentile
error and the error spread. This shows that while optimizing just
the median error has good overall results, its daily variability is
very high, making the results less reliable. On the other hand, D��Q
with the median + the spread as the objective, can reduce the daily
variability and improve the stability considerably.

Developing a new classi�er every calibration achieves lower
error rate and spread than using a �xed classi�er across all
calibrations, for both C�D��Q and E�D��Q. One might question
the signi�cance of developing a new classi�er every calibration,
after all, the output of the same qubit is being classi�ed. However,

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Tirthak Patel and Devesh Tiwari

0

1

2

3

4

0

2

4

6

8

7
5

th

0

2

4

6

(a) C�D��Q: Circle Classi�er

0

1

2

3

4

0

2

4

6

8

7
5

th

0

2

4

6

(b) E�D��Q: Ellipse Classi�er

Figure 15: Developing a new classi�er every calibration achieves
lower error rate than using the same classi�er across all calibrations.

0 10 20

�10

�5

0

5

10

|0i

|1i

0 10 20

�10

�5

0

5

10

|0i

|1i

Figure 16: Di�erence in classi�ers when a �xed classi�er is used
always (broken blue lines) vs. when a new classi�er is developed
every calibration (red solid lines).

0

2

4

6

0

2

4

6

7
5

th

0.0

0.1

0.2

Figure 17: Both C�D��Q and E�D��Q classi�ers have similar low
runtimes which are very stable across di�erent executions.

Fig. 15 shows the importance of developing a new classi�er after
each calibration. For both C�D��Q and E�D��Q, using a �xed classi-
�er (the one which performs the best among all the ones generated
over the 10 days) for all 10 calibrations performs worse than gen-
erating a new classi�er after every calibration. For example, for
C�D��Q using a �xed classi�er has an error spread of 6%, while
using a new classi�er daily has an error spread of 4.3%.

The reason for this is that due to the instability of the qubits, the
measurement points generated daily might have di�erent densities,
requiring di�erent classi�ers as shown in Fig. 16. Here, the broken
blue line shows the �xed best classi�er across the 10 days, while
the red lines indicate the classi�ers which were the best for the
two days shown. Evidently, the regions considered by the �xed
classi�er are quite di�erent than the regions considered by the
day-speci�c classi�ers, even though they have some intersecting
portions. However, the disjoint portions are the ones which actually
contribute to the higher error rate of the �xed classi�er.

Lastly, both C�D��Q and E�D��Q classi�ers have similar low
runtimes for executing the simulated annealing engine. The
overhead of running the micro-benchmarks on the quantum com-
puter is very small as it can execute the entire batch of 100 runs,

each with 1024 trials (100k trials in total), within 2 minutes, which
is comparable to the baseline case as most of the time is consumed
in setting up and initializing the qubits. Once, the training dataset
is generated, then the simulated annealing engine needs to be exe-
cuted. Fig. 17 shows that the execution time of D��Q’s simulated
annealing engine is less than 7 minutes on our local 4.20 GHz In-
tel Core i7-7700K machine for both C�D��Q and E�D��Q and the
spread of these runtimes is ⇡0.2 minutes across all the executions.
This overhead is not on the critical path as the quantum computer
can resume regular computation after the 2 minutes to run the
micro-benchmarks. Note that we found that executing more than
100 micro-benchmarks (e.g., 1000) does not reduce the error rates,
but does incur a higher overhead of performing the optimization.

Even though E�D��Q optimizes 10 parameters, it has an equiva-
lent runtime to C�D��Q, which optimizes 6 parameters. Thus, over-
all, E�D��Q not only has lower error rates, but also has comparable
runtime to C�D��Q, demonstrating that it is a more suitable option.

6 RELATEDWORK
Previous works have proposed qubit Quantum Error Correction
(QEC) codes, which have an overhead of more than 10 physical
qubits per logical qubit [7, 20, 36, 40]. These methods are thus
untenable for current NISQ devices, which require a low-overhead
(in terms of the number of ancillary qubits required) solution to
reduce the error so that they can execute quantum algorithms.

On the other hand, a large amount of focus has been dedicated
toward optimizing the execution of quantum algorithms. This in-
cludes developing frameworks and compilers to optimize the map-
ping of a quantum algorithm to a quantum computer such as IBM’s
Qiskit compiler and Google’s Cirq framework [1, 2, 11, 16, 19]. In
conjunction with these industry-led e�orts, academic research has
also focused on reducing the error rates of quantum algorithms
by proposing debugging methods, simulation strategies, and noise-
and-error-aware algorithm mapping approaches [4, 5, 8, 12, 14, 18,
21, 22, 25, 27–29, 32, 34, 35, 35, 38, 39, 41–43]. For example, Murali
et al. [28] propose a method to reduce error rate by performing
cross-talk-aware algorithm mapping to the qubits.

While these works focus on the higher-level problems of an
algorithm’s execution stack, IBM’s OpenPulse, which is the frame-
work to apply the pulses for quantum gates, has also been previ-
ously leveraged to solve problems including optimizing compila-
tion [2, 9, 13, 15]. However, none of the above works have optimized
the state classi�cation problem by using raw output data of applying
pulses, and thus, these works can be used in a compatible manner
with D��Q to minimize the error rates of NISQ devices.

7 CONCLUSION
This paper presented D��Q, the �rst work to optimize state classi-
�ers which di�erentiate between di�erent quantum states. D��Q
demonstrates that the output error and its variability on NISQ
devices can be reduced just by optimizing the classi�cation method-
ology, without any hardware or compiler modi�cations. D��Q is
available at: http://github.com/GoodwillComputingLab/DISQ.

Acknowledgment. We are thankful to anonymous reviewers for the con-
structive feedback and Northeastern University for supporting this work.

D��Q : A Novel�antum Output State Classification Method on IBM�antum Computers using OpenPulse ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] Talha Ahmed. 2018. Q#: A Quantum Programming Language by Microsoft. Ph.D.

Dissertation. Imperial College London.
[2] G Aleksandrowicz, T Alexander, P Barkoutsos, L Bello, Y Ben-Haim, D Bucher,

et al. [n.d.]. Qiskit: An Open-source Framework for Quantum Computing.(2019).
[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
2019. Quantum Supremacy using a Programmable Superconducting Processor.
Nature 574, 7779 (2019), 505–510.

[4] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. 2019. QURE: Qubit
Re-allocation in Noisy Intermediate-Scale Quantum Computers. In Proceedings
of the 56th Annual Design Automation Conference 2019. ACM, 141.

[5] Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chat-
topadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-Constraint Quantum
Circuit Mapping on NISQ Computers. In 38th IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2019. Institute of Electrical and Electronics
Engineers Inc., 8942132.

[6] Sergey Bravyi, Graeme Smith, and John A Smolin. 2016. Trading Classical and
Quantum Computational Resources. Physical Review X 6, 2 (2016), 021043.

[7] Jonathan J Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Marina
Kudra, Per Delsing, and Jonas Bylander. 2019. Decoherence Benchmarking of
Superconducting Qubits. npj Quantum Information 5, 1 (2019).

[8] Anastasiia Butko, George Michelogiannakis, Samuel Williams, Costin Iancu,
David Donofrio, John Shalf, Jonathan Carter, and Irfan Siddiqi. 2019. Understand-
ing Quantum Control Processor Capabilities and Limitations through Circuit
Characterization. arXiv preprint arXiv:1909.11719 (2019).

[9] Lauren Capelluto and Thomas Alexander. 2020. OpenPulse: Software for Exper-
imental Physicists in Quantum Computing. Bulletin of the American Physical
Society (2020).

[10] J Ignacio Cirac and Peter Zoller. 2012. Goals and Opportunities in Quantum
Simulation. Nature Physics 8, 4 (2012), 264.

[11] Rigetti Computing. 2019. Pyquil documentation. URL http://pyquil. readthedocs.
io/en/latest (2019).

[12] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019. A
Case for Multi-Programming Quantum Computers. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 291–303.

[13] Eugen Dumitrescu, Raphael Pooser, and John Garmon. 2020. Benchmarking
Noise Extrapolation with OpenPulse. Bulletin of the American Physical Society
(2020).

[14] Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nelson
Leung, Yunong Shi, David I Schuster, Henry Ho�mann, and Frederic T Chong.
2019. Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale
Quantum Machines. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 266–278.

[15] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T
Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with
OpenPulse. arXiv preprint arXiv:2004.11205 (2020).

[16] Andrew Hancock, Austin Garcia, Jacob Shedenhelm, Jordan Cowen, and Calista
Carey. [n.d.]. Cirq: A Python Framework for Creating, Editing, and Invoking
Quantum Circuits. ([n. d.]).

[17] Mohamed W Hassan, Scott Pakin, and Wu-chun Feng. 2019. C to D-Wave: A
High-level C Compilation Framework for Quantum Annealers. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–8.

[18] Yipeng Huang andMargaret Martonosi. 2019. Statistical Assertions for Validating
Patterns and Finding Bugs in Quantum Programs. In Proceedings of the 46th
International Symposium on Computer Architecture. ACM, 541–553.

[19] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and
Christian Weedbrook. 2019. Strawberry �elds: A software platform for photonic
quantum computing. Quantum 3 (2019), 129.

[20] David Layden, Sisi Zhou, Paola Cappellaro, and Liang Jiang. 2019. Ancilla-Free
Quantum Error Correction Codes for Quantum Metrology. Physical review letters
122, 4 (2019).

[21] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001–1014.

[22] Gushu Li, Yufei Ding, and Yuan Xie. 2020. Towards E�cient Superconducting
Quantum Processor Architecture Design. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 1031–1045.

[23] Ji Liu, Gregory T Byrd, and Huiyang Zhou. 2020. Quantum Circuits for Dynamic
Runtime Assertions in Quantum Computation. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1017–1030.

[24] Margaret Martonosi and Martin Roetteler. 2019. Next Steps in Quantum Com-
puting: Computer Science’s Role. arXiv preprint arXiv:1903.10541 (2019).

[25] Mavadia et al. 2017. Prediction and Real-Time Compensation of Qubit Decoher-
ence via Machine Learning. Nature communications 8 (2017).

[26] David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop,
Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp, et al.
2018. Qiskit Backend Speci�cations for OpenQASM and OpenPulse Experiments.
arXiv preprint arXiv:1809.03452 (2018).

[27] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 1015–1029.

[28] Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari.
2020. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum
Computers. (2020), 1003–1016.

[29] Daniel C Murphy and Kenneth R Brown. 2019. Controlling Error Orientation
to Improve Quantum Algorithm Success Rates. Physical Review A 99, 3 (2019),
032318.

[30] Scott Pakin. 2016. A Quantum Macro Assembler. In 2016 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–8.

[31] Scott Pakin and Steven P Reinhardt. 2018. A Survey of Programming Tools for
D-Wave Quantum-Annealing Processors. In International Conference on High
Performance Computing. Springer, 103–122.

[32] Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. {UREQA}:
Leveraging Operation-Aware Error Rates for E�ective Quantum Circuit Map-
ping on NISQ-Era Quantum Computers. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20). 705–711.

[33] John Preskill. 2018. Quantum Computing in the NISQ Era and Beyond. Quantum
2 (2018), 79.

[34] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry
Ho�mann, and Frederic T Chong. 2019. Optimized Compilation of Aggregated In-
structions for Realistic Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 1031–1044.

[35] Kaitlin N Smith and Mitchell A Thornton. 2019. A Quantum Computational
Compiler and Design Tool for Technology-Speci�c Targets. In Proceedings of the
46th International Symposium on Computer Architecture. ACM, 579–588.

[36] Luyan Sun, Ling Hu, Yuwei Ma, Weizhou Cai, Xianghao Mu, Yuan Xu, Wang
Weiting, Yukai Wu, Haiyan Wang, Yipu Song, et al. 2019. Experimental Quantum
Error Correction with Binomial Bosonic Codes. In APS Meeting Abstracts.

[37] Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:
Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 253–265.

[38] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating Measurement Errors
in Quantum Computers by Exploiting State-Dependent Bias. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
279–290.

[39] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not All Aubits are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 987–999.

[40] Barbara Terhal, Leonid Pryadko, Daniel Weigand, Yang Wang, Hamed Asasi, and
Christophe Vuillot. 2019. Scalable Quantum Error Correction with the Bosonic
GKP Code. In APS Meeting Abstracts.

[41] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping Quantum
Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H
Operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[42] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. An E�cient Method-
ology for Mapping Quantum Circuits to the IBM QX Architectures. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (2018).

[43] Alwin Zulehner and Robert Wille. 2019. Compiling SU (4) Quantum Circuits to
IBM QX Architectures. In Proceedings of the 24th Asia and South Paci�c Design
Automation Conference. ACM, 185–190.

